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ABSTRACT
The principle purpose of this paper is to introduce and study some
new classes of sets in topological spaces which are finer than the
classes of open sets and ω−open sets. The continuity via these
classes will be introduced and studied.
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1. INTRODUCTION
In general topology, many authors introduced and studied some
classes of weak or strong forms of open sets in topological
spaces. In 1970 Levine, [6], introduced the notion of a generalized
open sets which is a weak form of open sets. In 1982 Hdeib [2]
introduced the notion of a ω−open sets as a weak form of open
sets. In 1983 the authors [5] introduced the weak form for an open
set which is called a β−open set. In 2005 Al-Zoubi [4] introduced
the generalization property of ω−open sets to get a weak form of
ω−open sets. In 2009 Noiri and Noorani [7] introduced the notion
of βω−open set which is a weak form for a ω−open sets and a
β−open sets.

This paper is organized as follows. Section 2 is devoted to some
preliminaries. In Section 3 we introduce the concept of general-
ized βω−open sets by utilizing the βω−closure operator. Further-
more, the relationship with the other known sets will be studied. In
Section 4 we introduce the notions of βω−continuous, generalized
βω−continuous, Slightly and Contra βω−Continuous functions.

2. PRELIMINARIES
For a topological space (X, τ) and A ⊆ X , throughout this paper,
we mean Cl(A) and Int(A) the closure set and the interior set of
A, respectively.

THEOREM 2.1. [1] For a topological space (X, τ) and A,B ⊆
X , if B is an open set in X then Cl(A)capB ⊆ Cl(A ∩B).

THEOREM 2.2. [1] For a topological space (X, τ),

(1) Cl(X −A) = X − Int(A) for all A ⊆ X .
(2) Int(X −A) = X − Cl(A) for all A ⊆ X .

DEFINITION 2.3. [6] A subset A of a topological space (X, τ)
is called generalized closed (simply g−closed) set, if Cl(A) ⊆ U
whenever A ⊆ U and U is open subset of (X, τ). The complement
of g−closed set is called generalized open (simply g−open) set.

THEOREM 2.4. [6] Every closed set is a g−closed set.

DEFINITION 2.5. A topological space (X, τ) is called:

(1) T1/2−space [6] if every g−closed set is closed set.
(2) T1−space [1] if for each disjoint point x 6= y ∈ X , there are

two open sets G and H in X such that x ∈ H , y ∈ G, x /∈ G
and y /∈ H .

THEOREM 2.6. [3] A topological space (X, τ) is T1/2−space
if and only if every singleton set is open or closed set.

THEOREM 2.7. [1] A topological space (X, τ) is T1−space if
and only if every singleton set is closed set.

DEFINITION 2.8. [2] A subset A of a space X is called
ω−open set if for each x ∈ A, there is an open set Ux contain-
ing x such that Ux − A is a countable set. The complement of a
ω−open set is called a ω−closed set. The set of all ω−closed sets
in X denoted by ωC(X, τ) and the set of all ω−open sets in X
denoted by ωO(X, τ).

THEOREM 2.9. [2] Every open set is ω−open set.

THEOREM 2.10. [2] For a topological space (X, τ), the pair
[X,ωO(X, τ)] forms a topological space.

For a topological space (X, τ) and A ⊆ X , the ω−closure set
of A is defined as the intersection of all ω−closed subsets of X
containing A and is denoted by Clω(A). The ω−interior set of A
is defined as the union of all ω−open subsets of X contained in A
and is denoted by Intω(A).

DEFINITION 2.11. [4] A subset A of a space X is called gen-
eralized ω−closed set (simply gω−closed) set if Clω(A) ⊆ U
whenever A ⊆ U and U is open set. The complement of gen-
eralized ω−closed set is called generalized ω−open set (simply
gω−open) set.

THEOREM 2.12. [4] Every g−closed set is a gω−closed set.

DEFINITION 2.13. [7] A subset A of a topological space
(X, τ) is called βω−open set if A ⊆ Cl(Intω(Cl(A))). The com-
plement of βω−open set is called βω−closed set. The set of all
βω−closed sets in X denoted by βωC(X, τ) and the set of all
βω−open sets in X denoted by βωO(X, τ).
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THEOREM 2.14. [7] The union of arbitrary of βω−open sets
is βω−open set.

THEOREM 2.15. [7] Every ω−open set is βω−open set.

DEFINITION 2.16. A function f : (X, τ) → (Y, ρ) of a space
(X, τ) into a space (Y, ρ) is called:

(1) g−continuous function [6] if f−1(U) is a g−open set in X for
every open set U in Y .

(2) ω−continuous function [2] if for each x ∈ X and for an open
set G in Y containing f(x), there is a ω−open set U in X
containing x such that f(U) ⊆ G.

(3) gω−continuous function [4] if f−1(U) is a gω−open set in X
for every open set U in Y .

THEOREM 2.17. [2] A function f : (X, τ) → (Y, ρ) is a
ω−continuous function if and only if f−1(U) is a ω−open set in
X for every open set U in Y .

It is clear that Every continuous function is g−continuous function
[6], every continuous function is ω−continuous function [2], every
ω−continuous function is gω−continuous function [4] and every
g−continuous function is gω−continuous function [4].

3. GENERALIZED βω−OPEN SETS
For a topological space (X, τ) and A ⊆ X , the βω−closure set
of A is defined as the intersection of all βω−closed subsets of X
containing A and is denoted by Clβω(A). The βω−interior set of
A is defined as the union of all βω−open subsets of X contained
in A and is denoted by Intβω(A). From Theorem (2.14), Clβω(A)
is a βω−closed subsets of X and Intβω(A) is βω−open subsets
of X .

DEFINITION 3.1. A subset A of a topological space (X, τ)
is called generalized βω−closed (simply Gβω−closed) set, if
Clβω(A) ⊆ U whenever A ⊆ U and U is open subset of
(X, τ). The complement of Gβω−closed set is called generalized
βω−open (simply Gβω−open) set.

For a topological space (X, τ), the set of all Gβω−closed sets in
X denoted by GβωC(X, τ) and the set of all Gβω−open sets in X
denoted by GβωO(X, τ).

EXAMPLE 3.2. For any topological space (X, τ), if X is
a countable then it’s clear that every subset of X is i a both
Gβω−closed and Gβω−open set. That is,

GβωO(X, τ) = GβωC(X, τ) = P (X),

where P (X) is the power of X .

EXAMPLE 3.3. Let (R, τu) be the real usual topological
space on the set of real numbers R. The rational set Q is a
Gβω−closed set, since the irrational set IR is a βω−open set, that
is, Clβω(Q) = Q.

THEOREM 3.4. Any a countable subset of a topological space
(X, τ) is a Gβω−closed set in X .

THEOREM 3.5. Every βω−open set is Gβω−open set.

COROLLARY 3.6. Every βω−closed set is Gβω−closed set.

The converse of the last theorem is no need to be true.

EXAMPLE 3.7. In topological space (R, τ), the set R−{2} is
Gβω−closed set but it is not βω−closed set, where τ = {∅, R,R−
{2, 3}}.

THEOREM 3.8. Let (X, τ) be a topological space. If (X, τ) is
a T1/2−space then every Gβω−closed set in X is βω−closed set
in X .

PROOF. Let A be a Gβω−closed set in X . Suppose that A is
not βω−closed set. Then there is at least x ∈ Clβω(A) such that
x /∈ A. Since (X, τ) is a T1/2−space then by Theorem (2.6), {x}
is an open or closed set in X . If {x} is a closed set in X then
X − {x} is an open. Since x /∈ A then A ⊆ X − {x}. Since A is
a Gβω−closed set and X − {x} is an open subset of X containing
A, then Clβω(A) ⊆ X − {x}. Hence x ∈ X − Clβω(A) and this
a contradiction, since x ∈ Clβω(A). If {x} is an open set then it
is βω−open set. Since x ∈ Clβω(A) then we have {x} ∩ A 6= ∅.
That is, x ∈ A and this a contradiction. Hence A is a βω−closed
set in X .

THEOREM 3.9. Every gω−closed set is Gβω−closed set.

PROOF. It is clear, since Clβω(A) ⊆ Clω(A).

The converse of above theorem is no need to be true.

EXAMPLE 3.10. In topological space (R, τ), where τ =
{∅, R, IR ∪ {2}} and IR is a set of irrational numbers, the set
of rational numbers Q is βω−open set. That is, IR is βω−closed
set and thus Clβω(IR) = IR. Hence IR is a Gβω−closed set.
Since Q is not a ω−open set, then IR is not a ω−closed set, that
is, Clω(IR) 6= IR. Note that IR ⊆ IR ∪ {2} and IR ∪ {2}
but Clω(IR) is not subset of R ∪ {2}, note that for example,
3 ∈ Clω(IR) and 3 /∈ IR ∪ {2}. That is, the set IR is not
gω−closed set.

A topological space (X, τ) is called anti-locally countable space
[7] if each nonempty open set in X is uncountable set.

LEMMA 3.11. [7] Let (X, τ) be anti-locally countable space.
Then

(1) Int(A) = Intω(A) for every ω−closed set A in X .
(2) Cl(A) = Clω(A) for every ω−open set A in X .

LEMMA 3.12. For a topological space (X, τ) and A ⊆ X , the
following hold:

(1) Intβω(X −A) = X − Clβω(A).
(2) Clβω(X −A) = X − Intβω(A).

PROOF. 1. Since A ⊆ Clβω(A), then X − Clβω(A) ⊆ X −
A. Since Clβω(A) is a βω−closed set then X − Clβω(A) is a
βω−open set. Then

X − Clβω(A) = Intβω[X − Clβω(A)] ⊆ Intβω(X −A).

For the other side, let x ∈ Intβω(X −A). Then there is βω−open
set U such that x ∈ U ⊆ X − A. Then X − U is a βω−closed
set containing A and x /∈ X − U . Hence x /∈ Clβω(A), that is,
x ∈ X − Clβω(A).
2. Similar for the part(1).

DEFINITION 3.13. A subset A of a topological space (X, τ)
is called Sω−open set if A ⊆ Intω(Clω(A)). The complement
of Sω−open set is called Sω−closed set. The set of all Sω−closed
sets in X denoted by SωC(X, τ) and the set of all Sω−open sets
in X denoted by SωO(X, τ).

THEOREM 3.14. Let (X, τ) be anti-locally countable space
and βωO(X, τ) = SωO(X, τ). Then

(1) Cl(A) = Clω(A) = Clβω(A) for every ω−open set A in X .
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(2) Int(A) = Intω(A) = Intβω(A) for every ω−closed set A
in X .

PROOF. (1) Let A be a ω−open set in X . It is clear from Lemma
(3.11) that Cl(A) = Clω(A) and it is clear that that Clβω(A) ⊆
Clω(A). Now we need to prove that Clω(A) ⊆ Clβω(A). Let x /∈
Clβω(A). Then there is a βω−open set O in X such that O∩A =
∅. Since βωO(X, τ) = SωO(X, τ), then O ⊆ Intω(Clω(O).
Hence Intω(Clω(O) is a ω−open set containing x and

Intω(Clω(O)) ∩A = Intω(Clω(O)) ∩ Intω(A)

= Intω[Clω(O) ∩A] ⊆ Clω(O) ∩A

⊆ Clω(O ∩A) = Clω(∅) = ∅.

That is, x /∈ Clω(A). Hence Clβω(A) ⊆ Clω(A).
(2) Similar for the part(1), by Lemma (3.12) and Lemma
(3.11).

THEOREM 3.15. Let (X, τ) be anti-locally countable space
and βωO(X, τ) = SωO(X, τ). Then X is T1− space if and only
if every Gβω−closed set is a βω−closed set in X .

PROOF. Necessity: By Theorem (2.7), X is a T1/2− space.
Then, by Theorem (3.8), every Gβω−closed set is a βω−closed
set in X .

Sufficiency: Let x ∈ X be an arbitrary point in X . By using Theo-
rem (2.7), to prove that X is a T1− space, we will prove that {x}
is a closed set in X . Suppose that {x} is not closed set in X . Then
A = X − {x} is not open set. Then X is the only open set con-
taining A and hence Clβω(A) ⊆ X , that is, A is a Gβω−closed
set in X . Then, by assumption, A is a βω−closed set. That is,
Clβω(A) = A. Since X − {x} is a ω−open set, then by Theo-
rem (3.14)

Cl(A) = Clω(A) = Clβω(A) = A.

That is, {x} is an open set and this contradicts the fact (X, τ) be
anti-locally countable space. Then X is T1−space.

THEOREM 3.16. If A is a Gβω−closed set in a topological
space (X, τ) and B is a closed set in X then A∩B is a Gβω−closed
set.

PROOF. Let U be an open subset of X such that A ∩ B ⊆ U .
Since B is a closed set in X then U ∪ (X − B) is an open set in
X . Since A is a Gβω−closed set in X and A ⊆ U ∪ (X −B) then
Clβω(A) ⊆ U ∪ (X −B). Hence

Clβω(A ∩B) ⊆ Clβω(A) ∩ Clβω(B) ⊆ Clβω(A) ∩ Cl(B)

= Clβω(A) ∩B ⊆ [U ∪ (X −B)] ∩B

⊆ U ∩B ⊆ U.

Thus, A ∩B is a Gβω−closed set.

THEOREM 3.17. A subset A of a topological space (X, τ) is
a Gβω−open if and only if F ⊆ Intβω(A) whenever F ⊆ A and
F is closed subset of (X, τ).

PROOF. Let A be a Gβω−open subset of X and F be a closed
subset of X such that F ⊆ A. Then X − A is a Gβω−closed set
in X , X −A ⊆ X −F and X −F is an open subset of X . Hence
Lemma (3.12), X − Intβω(A) = Clβω(X − A) ⊆ X − F , that
is, F ⊆ Intβω(A).
Conversely, suppose that F ⊆ Intβω(A) where F is a closed sub-
set of X such that F ⊆ A. Then for any open subset U of X such
that X −A ⊆ U , we have X − U ⊆ A and X − U ⊆ Intβω(A).

Then by Lemma(3.12), X − Intβω(A) = Clβω(X − A) ⊆ U .
Hence X −A is a Gβω−closed (i.e., A is a Gβω−open set).

THEOREM 3.18. If A is a Gβω−closed subset of a topological
space (X, τ) then Clβω(A)−A contains no nonempty closed set.

PROOF. Suppose that Clβω(A) − A contains nonempty closed
set F . Then

F ⊆ Clβω(A)−A ⊆ Clβω(A).

Since A ⊆ Clβω(A) then F ⊆ X −A and so A ⊆ X − F . Since
A is a Gβω−closed set and X − F is an open subset of X , then
Clβω(A) ⊆ X − F and so F ⊆ X − Clβω(A). Therefore

F ⊆ Clβω(A) ∩ (X − Clβω(A)) = ∅

and so F = ∅. Hence Clβω(A)− A contains no nonempty closed
set.

COROLLARY 3.19. If A is a Gβω−closed subset of a topolog-
ical space (X, τ) then Clβω(A)−A is a Gβω−open set.

PROOF. By Theorem (3.18), Clβω(A) − A contains no
nonempty closed set and it is clear that ∅ ⊆ Intβω(Clβω(A)−A)
then by Theorem (3.17), Clβω(A)−A is a Gβω−open set.

THEOREM 3.20. If A is a Gβω−closed subset of a topological
space (X, τ) and B ⊆ X . If A ⊆ B ⊆ Clβω(A) then B is a
Gβω−closed set.

PROOF. Let U be an open set in X such that B ⊆ U . Then
A ⊆ B ⊆ U . Since A is a Gβω−closed set then Clβω(A) ⊆ U .
Since B ⊆ Clβω(A) then

Clβω(B) ⊆ Clβω[Clβω(A)] = Clβω(A) ⊆ U.

That is, B is a Gβω−closed set.

THEOREM 3.21. Let A be a Gβω−closed subset of a topo-
logical space (X, τ). Then A = Clβω(Intβω(A)) if and only if
Clβω(Intβω(A))−A is a closed set.

PROOF. Let Clβω(Intβω(A)) − A be a closed set. Since
Intβω(A) ⊆ A and A ⊆ Clβω(A), then Clβω(Intβω(A)) ⊆
Clβω(A). Then Clβω(Intβω(A)) − A ⊆ Clβω(A) − A, this im-
plies

Clβω(Intβω(A))−A ⊆ X −A.

Hence A ⊆ X−(Clβω(Intβω(A))−A). Since A is a Gβω−closed
set and X − (Clβω(Intβω(A))−A) is an open set containing A,
then Clβω(A) ⊆ X − (Clβω(Intβω(A))−A), this implies

Clβω(Intβω(A))−A ⊆ X − Clβω(A).

Therefore

Clβω(Intβω(A))−A ⊆ Clβω(A) ∩ (X − Clβω(A)) = ∅.

Hence Clβω(Intβω(A))−A = ∅, that is, Clβω(Intβω(A)) = A.
Conversely, if A = Clβω(Intβω(A)) then Clβω(Intβω(A)) −
A = ∅ and hence Clβω(Intβω(A))−A is a closed set.

THEOREM 3.22. Let Y be an open subset of a topological
space (X, τ). If A is a βω−open set in (X, τ) then A ∩ Y is a
βω−open set in (Y, τ |Y ).
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PROOF. Since A be a βω−open set in (X, τ), then A ⊆
Cl(Intω(Cl(A))). Since Y is an open set, then by Theorem (2.1),

A ∩ Y = (A ∩ Y ) ∩ Y ⊆ [(Cl(Intω(Cl(A)))) ∩ Y ] ∩ Y

⊆ Cl[Intω(Cl(A)) ∩ Y ] ∩ Y

= Cl|Y [Intω(Cl(A)) ∩ Y ]

= Cl|Y [Intω(Cl(A)) ∩ Intω(Y )]

= Cl|Y [Intω(Cl(A) ∩ Y )]

= Cl|Y [Intω(Cl(A) ∩ Y ∩ Y )]

⊆ Cl|Y [Intω(Cl(A ∩ Y ) ∩ Y )]

= Cl|Y [Intω(Cl|Y (A ∩ Y ))]

⊆ Cl|Y [Intω|Y (Cl|Y (A ∩ Y ))].

Therefore A ∩ Y is a βω−open set in (Y, τ |Y ).

THEOREM 3.23. Let Y be an open subset of a topological
space (X, τ). If A is a βω−open set in (Y, τ |Y ) then A is a
βω−open set in (X, τ).

PROOF. Since A is a βω−open set in (Y, τ |Y ) and since Y is
an open set, then

A ⊆ Cl|Y (Intω|Y (Cl|Y (A))) = Cl|(Intω|Y (Cl|Y (A))) ∩ Y

⊆ Cl|(Intω|Y (Cl|Y (A)) ∩ Y ) = Cl|(Intω(Cl|Y (A)) ∩ Y )

= Cl|(Intω(Cl|Y (A) ∩ Y )) = Cl|(Intω(Cl|Y (A)))

= Cl|(Intω(Cl(A) ∩ Y )) ⊆ Cl|(Intω(Cl(A ∩ Y )))

= Cl|(Intω(Cl(A))).

Therefore A is a βω−open set in X .

THEOREM 3.24. Let Y be an open subset of a topologi-
cal space (X, τ) and A be a subset of Y . Then Clβω|Y (A) =
Clβω(A) ∩ Y .

PROOF. Let x ∈ Clβω|Y (A) and G be a βω−open set in X
containing x. By Theorem (3.22), G ∩ Y is a βω−open set in Y
containing x and since x ∈ Clβω|Y (A), then G ∩ A = (G ∩
Y ) ∩ A 6= ∅. Then x ∈ Clβω(A) and since x ∈ Y , this implies
x ∈ Clβω(A) ∩ Y . That is, Clβω|Y (A) ⊆ Clβω(A) ∩ Y . On
the other side, let x ∈ Clβω(A) ∩ Y and O be a βω−open set
in Y containing x. By Theorem (3.23), O = G ∩ Y for some
βω−open set G in X . Since x ∈ Clβω(A), then G ∩ A 6= ∅
and so (G ∩ Y ) ∩A 6= ∅, since x ∈ Y . Hence O ∩A 6= ∅, that is,
x ∈ Clβω|Y (A). Hence Clβω(A) ∩ Y ⊆ Clβω|Y (A).

THEOREM 3.25. Let Y be an open subspace of a topological
space (X, τ) and A ⊆ Y . If A is a Gβω−closed subset in X then
A is a Gβω−closed set in Y .

PROOF. Let O be an open subset in Y such that A ⊆ O. Then
O = U ∩ Y for some open set U in X and so A ⊆ U . Since A
is a Gβω−closed subset of X , then Clβω(A) ⊆ U . By Theorem
(3.24), Clβω|Y (A) = Clβω(A) ∩ Y ⊆ U ∩ Y = O. Hence A is a
Gβω−closed set in Y .

THEOREM 3.26. Let Y be an open subspace of a topological
space (X, τ) and A ⊆ Y . If A is a Gβω−closed subset in Y and Y
is βω−closed in X then A is a Gβω−closed set in X .

PROOF. Let U be an open subset in X such that A ⊆ U . Then
A ⊆ U ∩ Y and U ∩ Y is open set in Y . Since A is a Gβω−closed

subset in Y , then Clβω|Y (A) ⊆ U ∩ Y . Since Y is an open set in
X and it is βω−closed in X then By Theorem (3.24),

Clβω(A) = Clβω(A ∩ Y ) ⊆ Clβω(A) ∩ Clβω(Y )

= Clβω(A) ∩ Y

= Clβω|Y (A) ⊆ U ∩ Y ⊆ U.

Hence A is a Gβω−closed set in X .

4. βω−CONTINUOUS FUNCTIONS
DEFINITION 4.1. A function f : (X, τ) → (Y, ρ) of a topo-

logical space (X, τ) into a space (Y, ρ) is called βω−continuous if
f−1(U) is a βω−open set in X for every open set U in Y .

THEOREM 4.2. A function f : (X, τ) → (Y, ρ) of a topolog-
ical space (X, τ) into a space (Y, ρ) is βω−continuous if and only
if f−1(F ) is a βω−closed set in X for every closed set F in Y .

THEOREM 4.3. Every ω−continuous function is
βω−continuous function.

The converse of the last theorem is no need to be true.

EXAMPLE 4.4. Let f : (R, τ) → (R, ρ) be a function defined
by f(r) = r, where

τ = {∅, R} and ρ = {∅, R, {2}}.
The function f is a βω−continuous, since f−1({2}) = {2} and
f−1(R) = R are βω−open sets in (R, τ). The function f is not
ω−continuous, since f−1({2}) = {2} is not ω−open set in (R, τ).

THEOREM 4.5. If f : (X, τ) → (Y, ρ) is a βω−continuous
function then for each x ∈ X and each open set U in Y with
f(x) ∈ U , there exists a βω−open set V in X such that x ∈ V
and f(V ) ⊆ U .

PROOF. Let x ∈ X and U be any open set in Y containing
f(x). Put V = f−1(U). Since f is a βω−continuous then V is a
βω−open set in X such that x ∈ V and f(V ) ⊆ U .
conversely, Let U be any open set in Y . Let x ∈ f−1(U). Then
f(x) ∈ U and hence by the hypothesis, there exists a βω−open
set V in X such that x ∈ V and f(V ) ⊆ U . Hence x ∈ V ⊆
f−1(U), that is, f−1(U) is a βω−open set in X . That is, f is a
βω−continuous.

THEOREM 4.6. Let f : (X, τ) → (Y, ρ) be a function of a
space (X, τ) into a space (Y, ρ). Then f is a βω−continuous if
and only if f [Clβω(A)] ⊆ Cl(f(A)) for all A ⊆ X .

PROOF. Let f be a βω−continuous and A be any subset of X .
Then Cl(f(A)) is a closed set in Y . Since f is a βω−continuous
then by Theorem (4.2), f−1[Cl(f(A))] is a βω−closed set in X .
That is,

Clβω

[
f−1[Cl(f(A))]

]
= f−1[Cl(f(A))].

Since f(A) ⊆ Cl(f(A)) then A ⊆ f−1[Cl(f(A))]. This implies,

Clβω(A) ⊆ Clβω

[
f−1[Cl(f(A))]

]
= f−1[Cl(f(A))].

Hence f [Clβω(A)] ⊆ Cl(f(A)).
Conversely, let H be any closed set in Y , that is, Cl(H) = H .
Since f−1(H) ⊆ X . Then by the hypothesis,

f
[
Clβω[f−1(H)]

]
⊆ Cl[f(f−1(H))] ⊆ Cl(H) = H.

This implies, Clβω[f−1(H)] ⊆ f−1(H). Hence Clβω[f−1(H)] =
f−1(H), that is, f−1(H) is a βω−closed set in X . Therefore f is
a βω−continuous.
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THEOREM 4.7. Let f : (X, τ) → (Y, ρ) be a function of a
space (X, τ) into a space (Y, ρ). Then f is βω−continuous if and
only if Clβω(f−1(B)) ⊆ f−1(Cl(B)) for all B ⊆ Y .

PROOF. Let f be a βω−continuous and B be any subset of
Y . Then Cl(B) is a closed set in Y . Since f is a ω−continuous
then by Theorem(4.2), f−1[Cl(B)] is a βω−closed set in X . That
is, Clβω

[
f−1[Cl(B)]

]
= f−1[Cl(B)]. Since B ⊆ Cl(B) then

f−1(B) ⊆ f−1[Cl(B)]. This implies,

Clβω(f−1(B)) ⊆ Clβω

[
f−1[Cl(B)]

]
= f−1[Cl(B)].

Hence Clβω(f−1(B)) ⊆ f−1[Cl(B)].
Conversely, Let H be any closed set in Y , that is, Cl(H) = H .
Since H ⊆ Y . Then by the hypothesis,

Clβω(f−1(H)) ⊆ f−1(Cl(H)) = f−1(H).

This implies, Clβω[f−1(H)] ⊆ f−1(H). Hence Clβω[f−1(H)] =
f−1(H), that is, f−1(H) is a βω−closed set in X . Hence f is a
βω−continuous.

THEOREM 4.8. Let f : (X, τ) → (Y, ρ) be a function of a
space (X, τ) into a space (Y, ρ). Then f is βω−continuous if and
if f−1(Int(B)) ⊆ Intβω[f−1(B)] for all B ⊆ Y .

PROOF. Let f be a βω−continuous and B be any sub-
set of Y . Then Int(B) is an open set in Y . Since f is a
ω−continuous then f−1[Int(B)] is a βω−open set in X . That is,
Intβω

[
f−1[Int(B)]

]
= f−1[Int(B)]. Since Int(B) ⊆ B then

f−1[Int(B)] ⊆ f−1(B). This implies,

f−1[Int(B)] = Intβω

[
f−1[Int(B)]

]
⊆ Intβω(f−1(B)).

Hence f−1(Int(B)) ⊆ Intβω[f−1(B)].
Conversely, let U be any open set in Y , that is, Int(U) = U . Since
U ⊆ Y . Then by the hypothesis,

f−1(U) = f−1(Int(U)) ⊆ Intβω[f−1(U)].

This implies, f−1(U) ⊆ Intβω[f−1(U)]. Hence f−1(U) =
Intβω[f−1(U)], that is, f−1(U) is a βω−open set in X . Hence
f is βω−continuous.

DEFINITION 4.9. A function f : (X, τ) → (Y, ρ) of a
topological space (X, τ) into a space (Y, ρ) is called generalized
βω−continuous (simply Gβω−continuous) function, if f−1(U) is
a Gβω−open set in X for every open set U in Y .

THEOREM 4.10. A function f : (X, τ) → (Y, ρ) of a topo-
logical space (X, τ) into a space (Y, ρ) is Gβω−continuous if and
only if f−1(F ) is a Gβω−closed set in X for every closed set F in
Y .

THEOREM 4.11. Every βω−continuous function is
Gβω−continuous function.

The converse of the last theorem is no need to be true.

EXAMPLE 4.12. Let f : (R, τ) → (R, ρ) be a function de-
fined by f(r) = r, where

τ = {∅, R,R− {2, 3}} and ρ = {∅, R, {2}}.

The function f is a Gβω−continuous, since f−1({2}) = {2} and
f−1(R) = R are Gβω−open sets in (R, τ). The function f is not
βω−continuous, since f−1({2}) = {2} is not βω−open set in
(R, τ).

THEOREM 4.13. Let f : (X, τ) → (Y, ρ) be a function of a
T1/2−space (X, τ) into a space (Y, ρ). If f is a Gβω−continuous
then it is a βω−continuous.

PROOF. Let f : (X, τ) → (Y, ρ) be a Gβω−continuous func-
tion and U be any open set in Y . Then f−1(U) is a Gβω−open set
in X . Since X is a T1/2−space then by Theorem (3.8), f−1(U) is
a βω−open set in X . That is, f is a βω−continuous function.

THEOREM 4.14. Every gω−continuous function is
Gβω−continuous function.

PROOF. Let f : (X, τ) → (Y, ρ) be a gω−continuous function
and U be any open set in Y . Then f−1(U) is a gω−open set in X
and by Theorem (3.9), f−1(U) is a Gβω−open set in X . That is, f
is a Gβω−continuous function.

The converse of the last theorem is no need to be true.

EXAMPLE 4.15. Let f : (R, τ) → (R, ρ) be a function de-
fined by

f(x) =

{
2, x ∈ IR
x, x /∈ IR

where

τ = {∅, R, IR ∪ {2}} and ρ = {∅, R, {2}},

IR is a set of irrational numbers. The function f is a
Gβω−continuous, since f−1({2}) = IR and f−1(R) = R are
Gβω−open sets in (R, τ). The function f is not gω−continuous,
since f−1({2}) = IR is not gω−open set in (R, τ).

THEOREM 4.16. If f : (X, τ) → (Y, ρ) is a Gβω−continuous
function then for each x ∈ X and each open set U in Y with
f(x) ∈ U , there exists a Gβω−open set V in X such that x ∈ V
and f(V ) ⊆ U .

PROOF. Let x ∈ X and U be any open set in Y containing
f(x). Put V = f−1(U). Since f is a Gβω−continuous then V is a
Gβω−open set in X such that x ∈ V and f(V ) ⊆ U .

The converse of the last theorem need not be true.

EXAMPLE 4.17. Let f : (R, τ) → (R, ρ) be a function de-
fined by

f(x) =

{
2, x ∈ {2, 3}
x, x /∈ {2, 3}

where

τ = {∅, R,R− {2, 3}} and ρ = {∅, R, {2}}.

The function f is not Gβω−continuous, since f−1({2}) = {2, 3}
is not Gβω−open set in (R, τ). On the other hand, for all x ∈ R,
{x} is a Gβω−open set in (R, τ).
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